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Abstract- In the context of mine warfare, detected mines can be
classified from their cast shadow.  A standard solution is to
perform image segmentation first (we obtain binary from
graylevel image giving the label zero for pixels belonging to the
shadow and the label one elsewhere), and then to perform a
classification based on features extracted from the 2D-shape of
the segmented shadow.  Consequently, if a mistake happens
during the process, it will be propagated through the following
steps.  In this paper, to avoid such drawbacks, we propose a
novel approach where a dynamic segmentation scheme is fully
classification-oriented.  Actually, classification is performed
directly from the raw image data.  The approach is based on the
combination of deformable models, genetic algorithms, and
statistical image models.

I. INTRODUCTION

Deformable contours are flexible models able to fit the
data.  Two techniques have been widely used: snakes and
deformable templates.  Snakes are active contour models
guided by internal constraint forces and image forces [1].
These free-shape models can be deformed in order to match
salient image features without prior information on the
geometry of the shape.  They do not require image
preprocessing.  On the opposite, deformable templates
describe the shape by using a deformation of a basic template
[2].  The image must be segmented first, in order to obtain an
explicit contour description.

Our approach takes place between these two techniques.
Searching the best solution through a large space of potential
solutions, a particular optimization process has to be applied.
Genetic algorithms are such balanced methods which exploit
the best solutions while exploring the search space.  For our
purpose, a set of templates (i.e. individuals) are deformed in
order to maximize an energy function based on the statistical
properties of the observed image.  These individuals are
contours alike snakes which manage to fit the observed
image.  Alterations among individuals lead to a solution
characterized by the Fourier decomposition of its contour.

The paper is organized as follows.  In Section II, we review
briefly the principle of the genetic algorithms.  Section III
describes the implementation.  In Section IV, experimental
results obtained on both simulated and real sonar images are
provided.  Finally the conclusion of our study is given in
Section V.

II. GENETIC ALGORITHMS

Genetic Algorithms (GA) are stochastic search methods
that mimic the natural biological evolution.  They operate on
a population of potential individuals applying the principle of
survival of the fittest to produce better and better

approximations of a solution [3] [4].  GAs are executed over
a sequence of iterations on a set of coded individuals, the
population, with three basic operators :
selection/reproduction, crossover, and mutation.  In each
generation a probabilistic selection is performed based upon
the individual’s fitness such that the best individuals have an
increased chance of being selected to reproduce in the next
generation.  Genetic operators are applied on these parent
chromosomes and new chromosomes (offspring) are
generated.

III. DESCRIPTION OF THE PROPOSED ALGORITHM

The genetic algorithm toolbox implemented in Matlab by
Houck et al. gave us some useful functions adaptable to the given
problem [5].  Their Matlab toolbox, named GAOT, Genetic
Algorithms for Optimization Toolbox, provides a group of related
functions with easy extensibility and modularity.

Given the raw image data, the population converges to a
contour well-fitted to the image.  Each individual is characterized
by specific Fourier descriptors related to its shadow contour.  This
contour splits the observed image in two homogeneous regions
whose statistical properties are used to evaluate the individual’s
fitness.  Over a sequence of iterations, GA generates better sets of
individuals thanks to selection and reproduction (using genetic
operators) of the best individuals.

A. Individual encoding
Shadows are described by two sets of Fourier coefficients,

corresponding to the Fourier transformations of the
coordinates of the contour pixels.  Given the set of N
uniformly spaced pixels (xi,yi)i=0…N-1 extracted from the
closed contour we compute the double set of Fourier
descriptors hereafter:

1

0

1

0

2exp1

2exp1

N

i
ik

N

i
ik

N
kijy

N
Y

N
kijx

N
X

In order to avoid the effect of an arbitrary starting point and
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Chromosomes are made of units called genes (actually the
features related to the set of Fourier descriptors) arranged in a
definite succession.  Here each chromosome )(K  presents the
real and imaginary parts of the two sets of K positive
descriptors (because *~~

kk XX  and *~~
kk YY ):
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B. Population

Initially, a given number Np of prototypes is provided for
each of the five classes considered : cylinders, spheres, and
three stealthy mines, the Manta and Sigeel mines which look
like truncated cones and the Rockan mine with its low and
peculiar profile.  This population is supposed to cover a large
set of possible situations especially under any point of view.
Fig. 1 shows some of the initial individuals.

Fig. 1. Some initial individuals.

C. Evaluation function

The evaluation or fitness function is chosen in a way such
that highly fitted strings (or chromosomes) are preferred.
During the selection process (see III.D.1.), individuals whose
chromosomes have high fitness values are chosen with higher
probability.  Given the observed image, fitness of a given
contour can be evaluated using the statistical framework
below.

We aim at finding the boundary between two specific
homogeneous regions of the observed image, namely the
reverberation and the shadow of the detected object.  The
conditional probability function of each pixel depends only
on whether it belongs to the inside or outside region of the

contour: i.e., all pixels inside (resp. outside) have a common
distribution characterized by a parameter vector in (resp.

out), with  = [ in, out] [7].  The likelihood function to
maximize is written as :

outin Rji
out

Rji
inK jiIpjiIpIP

),(),(
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where I(i,j) denotes the intensity of pixel whose coordinates
in the image are (i,j), Rin (resp. Rout) region of pixels
belonging to the shadow (resp. both the reverberation and the
echo).  Components of the vector )(K  (whose length is
2 2K) are the K Fourier descriptors characterizing the
individual (see III.A.). The corresponding contour whose
coordinates are (xi,yi)i=1...N can be rebuilt with:
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Given )(K , the explicit contour representation is obtained
with a degree of smoothness defined by the order K.  This
contour splits the image in two regions: the inside (shadow)
and the outside (reverberation and echo).
The goal is to estimate )(K  and  from the observed image
maximizing the likelihood function.  For sonar images, pixels
generally have a Rayleigh distribution.  For each region, it
follows:
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estimated.

Appendix A gives the following estimates:
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where
Nregion is the number of pixels belonging to the
region,

),( jiIregion  is the mean of the intensities of these
pixels,

2
region the variance of these pixels.

The maximum likelihood estimation of )(K  and  consists in
maximizing the log-likelihood function ,ln )(KIP ,

when 0ˆ),(),(~ djiIjiI .  It amounts then to maximize
the following evaluation function:
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The evaluation requires the mean point )~,~( 00 YX  around
which the contour has to be rebuilt from the others
descriptors Kkkk YX ...1)~,~( .  Practically this point is found in
the vicinity of an initial point (chosen by the operator for the
given observed image) in such a way that it maximizes the
evaluation function E.

D. Basic operators
1) Selection/reproduction procedure

During an iteration, a fixed number of individuals is
maintained.  Each individual is evaluated thanks to the above
evaluation function to give some measure of its fitness.  Then
a new population is formed by selecting the best individuals.
There are several schemes for the selection process [8].
Based on ranking methods, normalized geometric ranking
only requires the evaluation function to map the individuals
to a partially ordered set [5].  A probability of selection Pi is
assigned to individual i when all individuals are sorted:

11 ii
rqqP

where
q = the probability of selecting the best individual
ri = the rank of the individual i, where 1 is the best
Np = the population size
q’ = q/(1-(1-q)Np)

Choosing q=0.15 with Np=95, about 1/3 of the individuals
have a probability Pi higher than 0.001.  It appears as a good
compromise between a lack of diversity (for q<0.15) and
large computational times (for q>0.15).

2) Genetic operators
Genetic operators are applied on parent chromosomes: new

chromosomes, i.e. offspring, are generated.  Altering the
composition of children, a certain diversity is preserved.
Dealing with particular genes namely real and imaginary
parts of Fourier descriptors, we have implemented some
suited genetic operators making good use of Fourier
descriptors properties.  In order to keep constant the number
of individuals during each iteration, crossover takes two
individuals and produces two new children while mutation
alters one individual to produce a single new child.  Note that
ci (resp. pi) will refer to a child (resp. a parent):

- crossover
A crossover operation recombines genetic material of two
parent chromosomes to produce offspring for the next
generation.  We implement four different operations
(best(p1,p2) means “the best of (p1,p2) in terms of fitness”):

1. Random exchanges occur between the descriptors of the
parents with a probability equal to 0.2

2. 
)2,1(2

2211
ppbestc

ppc
3. 

5.1215.02
5.125.011

ppc
ppc

4. same operation as 2. but only on the coefficients X1 and Y1
(related to the principal axes)

The three last crossovers occur with a probability equal to
0.2/3.  On the whole, the crossover probability is fixed as 0.4.

- mutation
Based on the general idea of mutation, the first operation
happens one time per iteration and consists in additionning a
white gaussian noise on one of the descriptors.  The second
operation occurs more frequently with a probability equal to
0.2 and operates on the whole chromosome.  It consists in
doing an affine transformation of the Fourier descriptors (see
appendix B).  Child’s contour appears like the affine
transformation of the parent’s as if it was seen through a
different point of view.  Six affine transformations are
possible using a 2 2 matrix A:

 scaling 
10

01
A , with the random

parameter 0\4.0;4.0
 elongation along the rows of the image

10
01

A , with the random parameter

0\4.0;4.0

 elongation along the columns 
10

01
A , with

the random parameter 0\4.0;4.0

 rotation 

40
cos

40
sin

40
sin

40
cos

A , with

the random parameter 0\2;2

 skew transformation on the rows 
10

1
A , with

the random parameter 0\1.0;1.0

 skew transformation on the columns 
1
01

A ,

with the random parameter 0\1.0;1.0 .

After a genetic operation, each child is characterized by its
normalized descriptors (normalization has to be ensured after
any genetic operation) and its fitness value.

E. Termination criterion

The genetic algorithm is terminated when one of the
following conditions is met:
- no improvement in the best individual happens during
three consecutive generations,
- the specified maximum number of generations taken as 20
is reached.
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F. Classification step

Classification can be performed by comparing the
Fourier descriptors of the winner with the Fourier descriptors
of the initial prototypes.  Thanks to the uniqueness of the
normalized Fourier descriptors, we compute a classification
criterion assigning the fittest individual to the same class as
its nearest neighbour according to a minimal distance.

A distance dj can be computed from genes of the fittest
individual and those of the jth individual of the initial

population such that 
2
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pi is the weight related to the maximal value allowed
for the gene gi

Kiig 4....1
~  are the estimated genes and Ki

j
ig 4....1

are the genes of the jth individual’s chromosome of the
initial population.

Each index j refers to a specific prototype mine whose class
is known. The index jNpj

dArgj
...1

min  (Np is the size of the

population) is then related to the nearest prototype.  Notice
that individuals constituting the initial population is arranged
as follows: 19 cylindrical mines, 19 spherical mines, 19
Manta mines, 19 Sigeel mines and 19 Rockan mines.

Remember that genes are related to the real and the imaginary
parts of the normalized Fourier descriptors according to the
individual representation (see III.A.).

IV. EXPERIMENTAL RESULTS
To improve the robustness of the optimization, an image

normalization is performed to provide a new image as it
would be seen through a grazing angle of 45 degrees
preserving shape ratios.

For each real and simulated example, we give the contour
rebuilt from the estimated descriptors and the best distance dj
as defined above.

 Simulated sonar images :

 

 

 

 Synthetic aperture sonar images [9]:

V. CONCLUSION
In the context of mine warfare, shapes of possible mines

are well-known [10].  In terms of shadow recognition, one
need only to consider a limited set of cases depending on the
geometry of mines.  Genetic algorithms are such techniques
for searching through a space (population) of potential
individuals.  In this paper, we characterize each individual by

d4 = 0.133  cylinder

d56 = 0.018  manta d5 = 0.073  cylinder

d38 = 0.011
 sphere

d8 = 0.160  cylinder

d37 = 0.073  sphere

d55 = 0.228  manta

d84 = 0.029  rockan

d58 = 0.059
 sigeel
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a normalized double Fourier transformation of the
coordinates of the contour pixels.  Given a statistical
criterion, namely the evaluation function, individuals
converge towards an optimal one.  From raw image data, a
Maximum Likelihood approach allows to rate individuals in
terms of their fitness.  Furthermore specific genetic operators
take advantage of the double Fourier descriptors: while
crossovers give offspring similar to their parents, new
offspring appears thanks to mutations preserving diversity.
Finally, the fittest individual is classified comparing its
descriptors and those of the initial population.

Our approach stands out against classical classification
processing.  Dealing with raw data, we discard some
undesirable steps.  Indeed, without sequential processing, a
punctual perturbation will have less repercussion on the final
result.  Instead of doing image segmentation firstly, feature
extraction secondly and performing classification from these
features lastly, each individual acts as a potential solution
identifiable thanks to the Fourier decomposition of its
contour.  In this way, the whole of the contours move in order
to match the shadow resulting in a dynamic classification
process.

APPENDIX A

Probability density function ),(x  of Rayleigh
distribution is defined as

2

2

2 2
][exp),( dxdxxpx

whose parameters are ),( x .  d stands for the shift from
the origin and  is the scale parameter.
If x=(x1,x2,…,xN) is a realization of the variate
X=(X1,X2,…,XN) considering N random variables (pixels of
the observed image), independent of each other and obeying a
Rayleigh law ),(x , formally the maximum likelihood

estimate ˆ  is

)(lnmaxargˆ xPX

Thanks to independence,
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To find the shift d, one can use the statistical properties of the
centered Rayleigh law (d=0) that is to say the mean  and the
variance 2 defined as :

2
 and 

2
222

For the general Rayleigh law (d 0) the mean d  depends on
d such as dd .
Consequently for pixels Xi obeying to the same law, d
corresponds to the difference between the mean of these
pixels’ intensities and a term depending on their variance :
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APPENDIX B

An affine transformation of the contour is achieved doing
this operation on the double set of descriptors.  Indeed, given
the following affine transformation of the descriptors (except
translation):
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what proves that the corresponding contour undergoes the
same affine transformation.
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