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Abstract. 
 
It is easy to deal with a Venn Diagram for 1 ≤ n ≤ 3 sets.  When n gets larger, the picture 
becomes more complicated, that's why we thought at the following codification.  That’s 
why we propose an easy and systematic algebraic way of dealing with the representation 
of intersections and unions of many sets. 
 
Introduction. 
 
Let's first consider 1 ≤ n ≤ 9, and the sets S1, S2, …, Sn. 
Then one gets 2n-1 disjoint parts resulted from the intersections of these n sets.  Each part 
is encoded with decimal positive integers specifying only the sets it belongs to.  Thus: 
part 1 means the part that belongs to S1 (set 1) only, part 2 means the part that belongs to 
S2 only, ..., part n means the part that belongs to set Sn only. 
Similarly, part 12 means that part which belongs to S1 and S2 only, i.e. to S1∩S2 only. 
Also, for example part 1237 means the part that belongs to the sets S1, S2, S3, and S7 only, 
i.e. to the intersection S1∩S2∩S3∩S7 only. And so on. This will help to the construction 
of a base formed by all these disjoint parts, and implementation in a computer program of 
each set from the power set P(S1∪ S2∪ … ∪ Sn) using a binary number. 
The sets S1, S2, …, Sn, are intersected in all possible ways in a Venn diagram. Let 1 ≤ k ≤ 
n be an integer.  Let’s denote by: i1i2…ik the Venn diagram region/part that belongs to the 
sets Si1 and Si2 and … and Sik only, for all k and all n. The part which is outside of all sets 
(i.e. the complement of the union of all sets) is noted by 0 (zero). Each Venn diagram will 
have 2n disjoint parts, and each such disjoint part (except the above part 0) will be formed 
by combinations of k numbers from the numbers: 1, 2, 3, …, n.  
 
Example. 
 
Let see an example for n = 3, and the sets S1, S2, and S3. 
 

 
 
 
                                                           

1 It has been called the Smarandache’s Codification (see [4] and [3]). 

 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. 
 
 
 
Unions and Intersections of Sets. 
 
This codification is user friendly in algebraically doing unions and intersections in a simple 
way.   
Union of sets Sa, Sb, …, Sv is formed by all disjoint parts that have in their index either the 
number a, or the number b, …, or the number v.  
While intersection of Sa, Sb, …, Sv is formed by all disjoint parts that have in their index all 
numbers a, b, …, v.  
For n = 3 and the above diagram:  
S1∪S23 = {1, 12, 13, 23, 123}, i.e. all disjoint parts that include in their indexes either the digit 
1, or the digits 23;   
and S1∩S2 = {12, 123}, i.e. all disjoint parts that have in their index the digits 12.  
 
Remarks. 
 
When n ≥ 10, one uses one space in between numbers:  for example, if we want to represent 
the disjoint part which is the intersection of S3, S10, and S27 only, we use the notation [3 10 
27], with blanks in between the set indexes.  
Depending on preferences, one can use other character different from the blank in 
between numbers, or one can use the numeration system in base n+1, so each 
number/index will be represented by a unique character. 
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