DSTI at LLMs4OL 2024 Task A: Intrinsic versus extrinsic knowledge for type classification - WIMMICS: Web-Instrumented Man-Machine Interactions, Communities, and Semantics
Conference Papers Year : 2024

DSTI at LLMs4OL 2024 Task A: Intrinsic versus extrinsic knowledge for type classification

Abstract

We introduce semantic towers, an extrinsic knowledge representation method, and compare it to intrinsic knowledge in large language models for ontology learning. Our experiments show a trade-off between performance and semantic grounding for extrinsic knowledge compared to a fine-tuned model intrinsic knowledge. We report our findings on the Large Language Models for Ontology Learning (LLMs4OL) 2024 challenge.
Fichier principal
Vignette du fichier
mftyqchyndyhkfnqjmnfwhxbfvzgcbbh.pdf (226.18 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04678365 , version 1 (27-08-2024)

Identifiers

Cite

Hanna Abi Akl. DSTI at LLMs4OL 2024 Task A: Intrinsic versus extrinsic knowledge for type classification. 1st LLMs4OL Challenge @ ISWC 2024, Nov 2024, Maryland / USA, United States. ⟨hal-04678365⟩
51 View
14 Download

Altmetric

Share

More