Numerical study on the compressive behaviour of an aluminium honeycomb core
Abstract
In this research, a hexagonal honeycomb core under a compressional load is studied numerically from the initial elastic regime to the fully crushed state using the Abaqus finite-element modelling. Two modelling approaches, i.e. a static analysis and an explicit non-linear analysis, are applied to a 3D model of an aluminium honeycomb core. This honeycomb structure is compressed quasi statically using rigid plates and displacement control. Moreover, the crushing of the honeycomb-core structure and the failure due to buckling are verified numerically, and a study is also performed to show how different densities, cell sizes and specimen sizes can affect the average crush force and plateau force. A comparison between experimental and numerical results is drawn, showing that the numerical models can effectively predict the mean crushing force and mechanical behaviour with a good accuracy.